Instructions

Please read the previously uploaded instructions.

Exercise 1 (4 points)

Consider the linearly independent vectors $\vec{v}_{1}, \ldots, \vec{v}_{n} \in \mathbb{R}^{n}$. An orthogonal set of vectors $\vec{u}_{1}, \ldots \vec{u}_{n}$ can be constructed by the algorithm:

$$
\begin{align*}
& \vec{u}_{1}=\vec{v}_{1} \tag{1}\\
& \vec{u}_{2}=\vec{v}_{2}-\frac{\left\langle\vec{v}_{2}, \vec{u}_{1}\right\rangle}{\left\langle\vec{u}_{1}, \vec{u}_{1}\right\rangle} \vec{u}_{1} \tag{2}\\
& \vec{u}_{3}=\vec{v}_{3}-\frac{\left\langle\vec{v}_{3}, \vec{u}_{2}\right\rangle}{\left\langle\vec{u}_{2}, \vec{u}_{2}\right\rangle} \vec{u}_{2}-\frac{\left\langle\vec{v}_{3}, \vec{u}_{1}\right\rangle}{\left\langle\vec{u}_{1}, \vec{u}_{1}\right\rangle} \vec{u}_{1} \tag{3}\\
& \vec{u}_{4}=\vec{v}_{4}-\ldots \tag{4}
\end{align*}
$$

with $\langle\cdot, \cdot\rangle$ the standard \mathbb{R}^{n} scalar product. The general formula for \vec{u}_{k}, with $k=1, \ldots, n$, in terms of $\vec{v}_{1}, \ldots, \vec{v}_{k}$ has the form: For $k=1$

$$
\vec{u}_{1}=\vec{v}_{1}
$$

For $k>1$

$$
\vec{u}_{k}=\vec{v}_{k}-\sum_{j=1}^{k-1} \frac{\left\langle\vec{v}_{k}, \vec{u}_{j}\right\rangle}{\left\langle\vec{u}_{j}, \vec{u}_{j}\right\rangle} \vec{u}_{j}
$$

(a) (2 pts) Write a function in Python that receives a list of 1D Numpy-arrays, where the elements of the list are $\vec{v}_{1}, \ldots, \vec{v}_{n}$, and returns a list with the 1D Numpy-arrays $\vec{u}_{1}, \ldots, \vec{u}_{n}$.
(b) (2 pts) Give the complexity of the algorithm in terms of n. Specify the constants in front of each power of n.

Exercise 2 (5 points)

Consider a matrix $A \in \mathbb{R}^{n \times n}$, a vector $\vec{b} \in \mathbb{R}^{n}$ and the following iterative procedure:

$$
\begin{equation*}
\vec{x}^{(k)}=\vec{x}^{(k-1)}+\alpha_{k}\left(\vec{b}-A \vec{x}^{(k-1)}\right), \alpha_{k}=\frac{\left\|\vec{b}-A \vec{x}^{(k-1)}\right\|^{2}}{\left(A\left(\vec{b}-A \vec{x}^{(k-1)}\right)\right)^{\top}\left(\vec{b}-A \vec{x}^{(k-1)}\right)} \tag{5}
\end{equation*}
$$

1. (0.5 pts) Write a function that receives a matrix A and vectors \vec{b} and \vec{c} and returns $\vec{b}-A \vec{c}$.
2. (0.5 pts) Write a function that receives a vector \vec{r}, a matrix B and returns:

$$
\frac{\|\vec{r}\|^{2}}{(B \vec{r})^{\top} \vec{r}}
$$

3. (2 pts) Write a function that that receives a value $\epsilon>0$, a vector $\vec{x}^{(0)}$ and $N \in \mathbb{N}$ and iterates according to (5) such that $\left\|\vec{x}^{(k)}-\vec{x}^{(k-1)}\right\|_{2}<\epsilon$, with a maximum of N iterations, and returns $\vec{x}^{(k)}$. Use the two previously defined functions.
4. ($\mathbf{2} \mathbf{~ p t s}$) Compute the total number of operations involved in the previous question in terms of n. Assume that the maximum number of N iterations was achieved. Specify the constants in front of each power of n.
